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Since the GKG equation (2.5) is quadratic and con-
tains both branches of Eq. (2.2), it can have no normal-
izable solutions in pure TCV con�nement because there
is tunneling to the negative energy states, which becomes
catastrophic for small quark mass. This diÆculty is the
well-known \Klein Paradox" [4]. On the other hand, the
GKG equation with pure scalar con�nement does have
well de�ned normalizable solutions because there is no
possibility of tunneling to the negative branch.
The spirit of the Salpeter equation [5] is to conserve a

de�nite particle number. To this end, energy projection
operators are employed to remove the negative energy
spectrum and the fermion TCV Salpeter equation has
normalizable solutions for con�ned quarks [3]. The spin-
less Salpeter equation for TCV con�nement achieves the
same end more simply by explicitly including only the
positive branch of Eq. (2.2). For p-wave and higher an-
gular momentum states, we consider the Hamiltonian in
spherical coordinates,

H =

r
p2r +

J2

r2
+m2 + ar; (2.7)

which we obtain from dividing the momentum into radial
and angular parts. The wave equation to be solved is then
the eigenvalue problem

Hj i = Ej i (2.8)

for the pseudo-di�erential operator given by Eq. (2.7)
with the usual operator replacements.

III. SEMI-CLASSICAL ANALYTIC

QUANTIZATION

We have discussed the necessity of using the SS equa-
tion instead of the GKG equation with vector con�ne-
ment. In semi-classical language, the necessity of using
the SS equation becomes the necessity of using the turn-
ing points given by Eq. (2.6) with the positive sign only.
In this section we calculate the semi-classical spectrum of
the SS equation with TCV con�nement. We �rst rewrite
the SS equation (2.7) in terms of dimensionless variables

x � ar

E
;

� � aJ

E2
; (3.1)

Pr � pr
E
:

In the case of a massless quark, we have

Pr =

p
Q

x
; (3.2)

Q � (x� x1�)(x� x2�)(x1+ � x)(x2+ � x);
where

x1� =
1

2

�
1�

p
1� 4�

�
;

x2� =
1

2

�
1�

p
1 + 4�

�
: (3.3)

The dimensionless physical turning points resulting from
the SS equation are x1�. The dimensionless constants
x2� are turning points of the GKG equation, but not of
the SS equation.
In the regime we are investigating the angular momen-

tum J is limited but the energy E is large. It follows
that � � 1. To see this, we note that even for the lead-
ing (circular orbit) Regge trajectory J=E2 = 1=4a (see
the appendix) and hence �leading = 1=4. For �xed J and
large E, � becomes small. In this limit the leading be-
havior of the roots (3.3) is

x1� = � + �2 + : : : ; x1+ = 1� � � �2 � : : : ;
x2� = �� + �2 + : : : ; x2+ = 1 + � � �2 + : : : :

(3.4)

The SS equation may be quantized semi-classically by
the usual method [6]

Z r+

r�

dr pr = �

�
n+

1

2

�
: (3.5)

In dimensionless variables (3.1), the quantization condi-
tion (3.5) becomes

Z x+

x�

dxPr(x) =
a�

E2

�
n +

1

2

�
: (3.6)

The TCV quantization is achieved by integrating
Eq. (3.2). The method is quite accurate for all states
and becomes exact for states with many nodes in the ra-
dial wavefunction. This is the regime we are particularly
interested in.
Although the integral of Eqs. (3.2), (3.6) can be ex-

pressed in terms of elliptic integrals, it is more eÆcient
to approximate the integrand �rst for small �. The ap-
proximation

p
Q

x
'
p
(x� x1�)(x� x2�)

x

�
1� x� �2

2(1� x) � �2
�

(3.7)
reproduces the exact integrand to better than 0:5%
throughout most of the region of integration, even when
� = 0:1. The accuracy of this approximation is shown
graphically in Fig. 3, where we plot both the exact inte-
grand (3.2) and the approximation (3.7) for � = 0:1.
With the approximation (3.7), the quantization inte-

gral (3.6) is relatively easily evaluated. To order � we
�nd Z x+

x�

p
Q

x
dx ' 1

2
� ��

2
+ O(�2); (3.8)

which immediately leads to the result

E2

�a
= J + 2n+ 1: (3.9)

Upon making the Langer [7] correction to take into ac-
count the centrifugal singularity,

J ! J +
1

2
; (3.10)
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where J is now the angular momentumquantum number,
we �nd the �nal spectroscopic relation

E2

�a
= J + 2n+

3

2
: (3.11)

The relation (3.11) is identical to an analytic approxi-
mation for highly radially excited QCD string, as well as
being an excellent approximation to its exact numerical
solution [8].

IV. COMPARISON TO EXACT NUMERICAL

RESULTS

We can nail down our central result that the QCD
string spectrum (3.11) is replicated in the radially dom-
inant regime of the TCV potential by solving the
TCV SS equation exactly numerically. The variational
(Galerkin) method is well suited for solving eigenvalue
equations with mixed coordinate and momentum opera-
tors. Briey, the method begins with a complete set of
orthogonal states that can be Fourier transformed. The
wavefunction is approximated as a superposition of the
lowest N of those states. The wave equation transforms
into an N � N matrix equation which is then diagonal-
ized. The accuracy of the resulting eigenvalues and wave-
functions is measured by the dependence on N and the
dependence of the scale parameter of the basis set. De-
tails can be found in [9]. Some further considerations of
the accuracy of the variational method are presented in
[10].
The TCV SS equation (2.7) with m = 0 can thus be

solved for a variety of angular momenta, J = 0; 1; 2; : : :
and radial states, n = 0; 1; 2; : : :. The result is depicted
in Fig. 4. Plotted on this �gure are both the QCD string
slope 1=�a (solid) and the usual leading trajectory TCV
slope 1=4a (dashed). In both cases we start the lines at
J = 0. Although the leading trajectory (n = 0) agrees
with the dashed prediction, the situation changes as we
examine the higher radial excitations. At the larger n
values (deep daughters) we observe that the solid line
corresponding to the QCD string slope becomes accurate.
In Table 1 we provide the exact and the string solutions

for the s-wave radial excitations. We see now that all
aspects of the QCD string result (3.11) work quite well.
The di�erence between excitations is accurately two units
of E2=�a and the absolute values of the state energies
correspond well to the QCD string to three signi�cant
�gures.

V. SUMMARY AND DISCUSSION

On occasion, some simple results are quite unexpected.
We did not expect to �nd the m = 0 QCD string spec-
troscopy in a potential model. To summarize our �nding,
we have examined both numerically and analytically the
state spectroscopy for a massless quark moving in the

time-component vector linear con�nement potential. For
states with angular momentummuch less than the num-
ber of nodes we �nd the spectrum is exactly that of the
QCD string. The Regge slope, radial excitation energy,
and the absolute values of the energy (3.11) are exactly
what one expects from the QCD string.

Simple results, even surprising ones, usually have sim-
ple explanations. As we have recently pointed out [8],
the QCD string equations reduce to the spinless Salpeter
equation with a linear time-component vector potential
for the s-wave states. Thus there is a natural physical
connection between the two systems. We can understand
this connection simply. A QCD string corresponds to a
constant chromoelectric �eld in the quark rest frame. In
the limit that the quark is moving radially, the QCD
string has no angular momentum. The total energy of
the system becomes

Estring =
p
p2 +m2+ar

arcsin v?
v?

v?!0�!
p
pr2 +m2+ar:

(5.1)
In a potential model the �eld never carries angular mo-
mentum. The potential energy of the quark is linear in
the distance from the origin, which is the same as the
energy of the string as long as the string is moving ra-
dially so that there are no relativistic corrections due to
its transverse motion. The total energy of the quark in
a TCV potential,

ETCV =
p
p2 +m2 + ar; (5.2)

in the limit of vanishing v? becomes

lim
v?!0

Estring = lim
v?!0

ETCV =
p
pr2 +m2 + ar: (5.3)

It is thus natural to expect agreement between string and
TCV con�nement in the radial dominant regime.

The real puzzle is why the Regge slope of the QCD
string should be the same for both circular and radial
motions. On one hand it is well known from Nambu-Goto
days that the Regge slope of a rotating QCD string with
one end �xed is 1=�a. We have seen that the TCV po-
tential Regge slope varies from 1=4a to 1=�a as one goes
from orbital to radial motion [see Fig. 4]. There is thus
no obvious reason why this should not happen with the
QCD string. Since the QCD string/TCV potential Regge
slopes coincide at 1=�a for nearly radial motions this ex-
plains the remarkable uniform Regge structure seen pre-
viously from numerical solutions of the QCD string [8].
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APPENDIX A: NEARLY CIRCULAR ORBITS

For completeness we semi-classically quantize the TCV
equation for nearly circular orbits (J � n). Using the
notation of Eqs. (3.1{3.3), we consider the orbitally dom-
inant regime. In this case the turning points x1+ and x1�
are nearly equal. By Eq. (3.3), this occurs exactly at

xc =
1

2
;

�c =
1

4
: (A1)

For nearly circular orbits we can expand in � and x,
giving

x1� =
1

2
�
r
1

4
� �

Q ' 1

16
� �2 � 1

2

�
x� 1

2

�2

(A2)

' 1

2
(x� x1�)(x1+ � x)

Using the quantization condition (3.6), we obtain

1

2
p
2

�
1� 2

p
�
�
=

a

E2

�
n+

1

2

�
; (A3)

with � = aJ=E2. Solving for
p
�, squaring and dropping

the small squared n=E2 term, we obtain

E2

4a
= J +

p
2n+

1p
2
: (A4)

Finally, we make the Langer [7] correction J ! J + 1
2

and �nd [8]

E2

4a
= J +

p
2n+

1

2
+

1p
2
: (A5)
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TABLE I: An exact numerical solution for s-wave TCV con-
�nement compared with the analytic approximation to the
TCV/string showing the rapid convergence of our WKB ap-
proximation as the number of radial nodes, n, increases.

n Exact
�
E2

�a

�
2n+ 3

2

0 1.59 1.50

1 3.53 3.50

2 5.52 5.50

3 7.51 7.50

4 9.51 9.50

5 11.51 11.50

6 13.51 13.50

7 15.51 15.50

8 17.51 17.50

9 19.51 19.50

10 21.51 21.50
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FIG. 1: S-wave classical turning points for Eq. (2.6) with
scalar con�nement.
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FIG. 2: S-wave classical turning points for Eq. (2.6) with
vector con�nement.
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FIG. 3: The exact Bohr-Sommerfeld integrand (3.2) and the
approximation (3.7) for � = 0:1.
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FIG. 4: Regge diagram of exact numerical solutions to
Eq. (2.8) with linear vector con�nement (dots). The solid
lines are the QCD string trajectories with slope 1=�a and the
dashed lines have slope 1=4a. We observe the transition from
the leading TCV slope to string slope.


